

(patent pending)

DATASHEET

The OISM Series 1310/1550 three stage optical Isolator is a passive device that guides light at 1310/1550 nm in the normal direction while minimizing back reflection and back scattering in the reverse direction for any state of polarization. Employing Agiltron's proven advanced micro optics design, it features low insertion loss, extremely high isolation, compact structure, and high stability. These Telcordia qualified components have excellent characteristics, making them an ideal choice for application in fiber amplifier systems, pump laser diodes and optical fiber sensors.

Features

- Low Insertion Loss
- High Isolation
- Low PDL
- High Reliability
- Low Cost

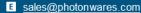
Specifications

Parameter	Min	Typical	Max	Unit	
	1310		1310 ± 15		
Operation Wavelength (λο)	C Band		1550 ± 15		nm
	L Band		1585 ± 15		
Typical Insertion Loss (λc, 23°C, no		≤ 0.6		dB	
Maximum Insertion Loss (Over λο, 23°C, no connector)			≤ 0.8		dB
Minimum Isolation (Over λο, 23°C		≥ 55		dB	
Typical Peak Isolation (λc, 23°C)		≥ 70		dB	
Polarization Dependent Loss		≤ 0.15		dB	
Polarization Mode Dispersion		≤ 0.05		ps	
Return Loss (Minimum, Input/Out		≥ 55		dB	
Operating Temperature	-5		+70	°C	
Storage Temperature	-40		+85	°C	
Optical Power Handling		≤ 400		mW	

Note: For a polarized input light version, the isolation is optimized to block the light reflection of the same polarization. Although lights of other polarizations may also be blocked, the extinction may be poor. PM isolators can be specially made to block backward propagating lights of all polarizations. PM isolators can also be made with a light polarizing function.

Applications

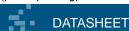
- Optical Fiber Amplifier
- Pump Laser Source
- Fiber Optic Sensor
- Instrumentation


Warning: This is an OEM module designed for system integration. Do not touch the PCB by hand. The electrical static can kill the chips even without a power plug-in. Unpleasant electrical shock may also be felt. For laboratory use, please buy a Turnkey system.

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 03/31/24

© Photonwares Corporation


P +1 781-935-1200

(patent pending)

Mechanical Dimensions (mm)

Ordering Information

	3 0							
Prefix	Туре	Wavelength	Grade	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
OISM-	Three stage = 30	1310 = 3 C Band = C L Band = L Special = 0	Standard = 1 Special = 0	ø5.5x40 = 1 Special = 0	SMF-28 = 1 Special = 0	Bare Fiber = 1 900μm Loose Tube = 3 Special = 0	0.25m = 1 0.5m = 2 1.0m = 3 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC=6 LC/PC=7 LC/APC= A LC/UPC = U Special=0

Application Notes

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

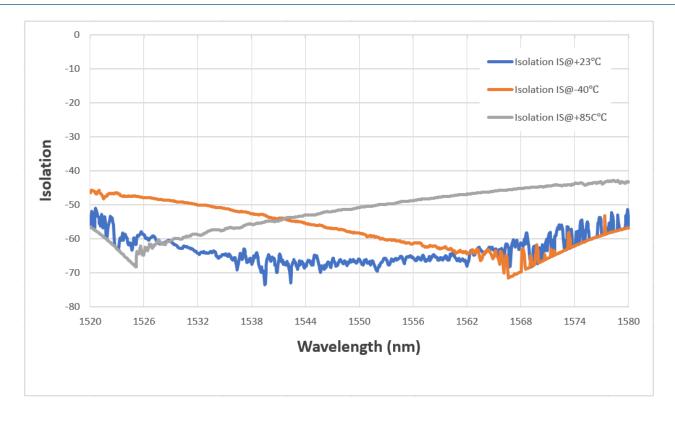
Fiber Cleanliness

Fibers with smaller core diameters ($<5 \mu m$) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.

^{*}Product dimensions may change without notice. This is sometimes required for non-standard specifications.

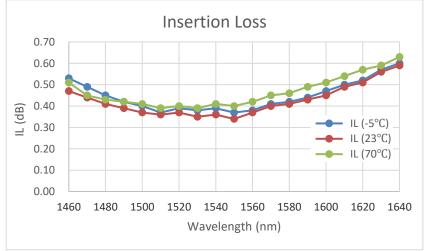


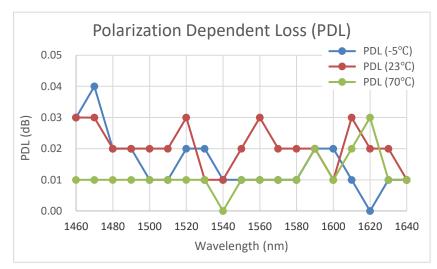
(patent pending)

DATASHEET

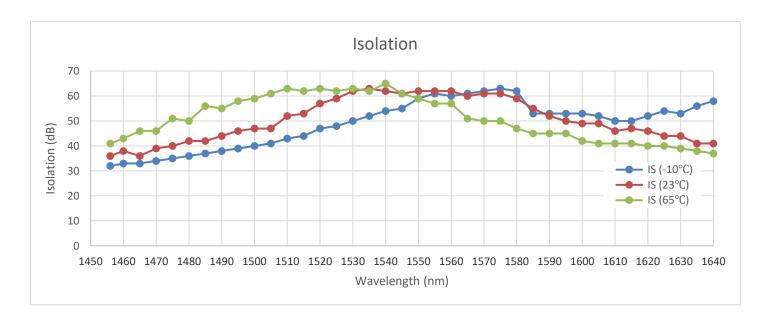
Isolation vs Wavelength

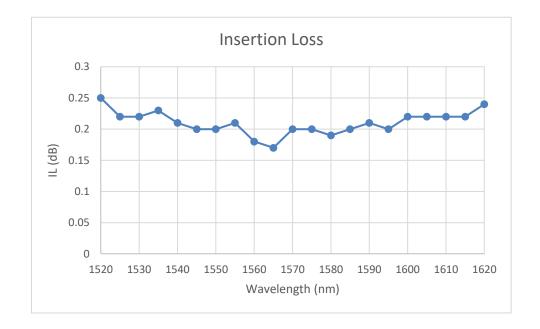





(patent pending)

Typical Wavelength Dependence for Single Stage





(patent pending)



Typical Wavelength Dependence for Dual Stage

