

244nm, 3mm aperture, 111MHz driving

DATASHEET

Return to the Webpage 🕥

Features

- Low Loss
- Low Cost
- High Speed

Applications

- Fiber Lasers
- Pulse Picker
- Sensor

The AOMS series fiberoptic acousto-optic modulators enable high-speed optical intensity modulation optimized for UV wavelengths. Built with high-purity quartz, they feature low insertion loss, a high UV damage threshold, and fast switching. When driven at the 111 MHz resonance frequency, the device satisfies the Bragg diffraction condition, deflecting light at a specific angle. Intensity is controlled by varying the RF drive amplitude (0-5 V via SMA input). The modulator inherently introduces a positive frequency shift, with negative shift versions available upon request. It operates over a narrow wavelength range, with output angle dependent on the input wavelength. A matching driver is available.

The AOMS rise/fall time is directly related to the optical beam diameter, following the relation Rise Time \approx D / v, where D is the laser beam diameter in the acoustic propagation direction and v is the acoustic velocity in the AOM crystal. Therefore, reducing the beam size increases modulation speed and bandwidth.

Specifications

Parameter	Min	Typical	Max	Unit
Wavelength	244	260	500	nm
Interaction material		Crystal quartz		
Active Aperture		3.0		mm
RF frequency		111		MHz
Rise/Fall	5	20	30	ns
Modulation Bandwidth	10		50	MHz
AR coating		< 0.5		%
Transmission		> 97		%
Damage Threshold (@355nm)		> 100		MW/cm²
Rise/Fall Time (Depends on beam diameter)		113		ns/mm
Acoustic mode	Longitudinal			
Polarization	Linear, vertical to base			
Diffraction efficiency		> 85		%
Separation angle (@244nm)		4.7		mrad
RF power		5		W
Input impedance		50		Ω
VSWR		< 1.2:1		
RF connector		SMA-F		
Cooling	Conduction-cooled			
Shell material	Aluminum alloy 6063			
Storage Temperature	-20		70	°C

Note: The specifications provided are for general applications with a cost-effective approach. If you need to narrow or expand the tolerance, coverage, limit, or qualifications, please [click this link]:

Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

Rev 03/27/25			
© Photonwares Corporation	P +1 781-935-1200	E sales@photonwares.com	www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

244nm, 3mm aperture, 111MHz driving

Laser Beam Passthrough Arrangement

Typical AOM Aperture Geometry- Rectangle

Possible laser beam input and output arrangements

©	Photonwares	Corporation
---	-------------	-------------

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

244nm, 3mm aperture, 111MHz driving

DATASHEET

Mechanical Dimensions (mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

© Photonwares Corporation

E sales@photonwares.com

www.agiltron.com

AOM Driver

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.

244nm, 3mm aperture, 111MHz driving

DATASHEET

Electrical Connection

Connect the device to the driver via the SMA connections

Ordering Information

	22			1		1
Prefix	Туре	Wavelength	Aperture	Frequency	Driver	Polarization
AOMS-	TeO2 = 11 Quartz = 22 Special = 00	244nm = 244 250nm = 250 Special = 0	3mm = 3 2mm = 2 1.5mm = 1 Special = 0	111MHz = 1	No = 2 Yes = 1	Polarized = 1 Random = 2

Red means special order

© Photonwares Corporation

P +1 781-935-1200

www.agiltron.com

244nm, 3mm aperture, 111MHz driving

DATASHEET

Q-switch Driver

The Driver is a medium-power acousto-optic Q-switch driver, with simple operation and high stability

Specifications

Para	neter	Min	Typical	Max	Unit	
RF frequency			111		MHz	
Frequency stability			±20		ppm/°C	
Output Power ^[1]					W	
VSWR				1.5/1		
Extinction ratio [2]		45	50		dB	
Rise-time ((10%-	0%-90%) 25 50			ns		
Fall-time 90%-10%)			25	50	ns	
Trigger frequency		DC 10			MHz	
Harmonic Distortior	1	-20			dBc	
Output impedance		50			Ω	
Analog control		0		V		
Logic		TTI	TL_HIGH = RF_OUTPUT			
Digital control		Standard TTL	(V_L<2.0V, V_H>3.0V)			
Connection	Input	D-SUB9 (Male)				
Connection	Output	SMA-F				
Supply power		24V(DC), <3A [3]				
Cooling		Conduction-cooled				
Operating Tempera	ture	10 50				

Note:

[1]. The factory power is optimally debugged according to the supporting load

[2]. Due to the limitation of test equipment, the test value will have a certain error

[3]. The maximum voltage is 28V, exceeding it will cause irreversible damage;

12V, Compatible with 12V, but the output power will be reduced and the output efficiency will be worse

244nm, 3mm aperture, 111MHz driving

DATASHEET

Interface Description / Control Logic

Operation Manual

- Connect the driver to +24V using the provided cable but do not turn the power on. Note: Applying the wrong polarity will burn the driver. Note: Powering the driver without the load will damage the driver.
- 2. Connect the driver OUTPUT to the accustom-optic device via the two SMAs.
- 3. Turn on the +24V power
- 4. Input TTL control signal to the Modulation connection port

© Photonwares Corporation

P +1 781-935-1200

www.agiltron.com

Information contained herein is deemed to be reliable and accurate as of the issue date. Photonwares reserves the right to change the design or specifications at any time without notice. Agiltron is a registered trademark of Photonwares Corporation in the U.S. and other countries.